Journal of Chromatography A, 659 (1994) 367-380 Elsevier Science B.V., Amsterdam

CHROM. 25 659

## Gas chromatographic study of solvation enthalpy by solvatochromically based linear solvation energy relationships

Jianjun Li\* and Peter W. Carr\*

Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, MN 55455 (USA)

(First received August 19th, 1993; revised manuscript received October 19th, 1993)

### ABSTRACT

Solute retention in capillary GC columns can be correlated with a linear solvation energy relationship (LSER) equation using chromatographically determined solute parameters (log  $L^{16}$ ,  $\pi_2^{+,C}$ ,  $\alpha_2^{c}$  and  $\beta_2^{c}$ ). The LSER coefficients obtained from correlation studies serve to quantitatively characterize the stationary phase. The effect of column temperature on retention was characterized by the temperature dependence of the LSER coefficients. Enthalpy and entropy of the retention process were also fitted quite well to the LSER equation. The main contributions to retention are from the solute-solvent interactions that give large favorable enthalpies and small unfavorable entropies. The LSER coefficients for the free energy and enthalpy regressions are linearly correlated.

#### INTRODUCTION

Temperature is the most important operating parameter in gas chromatography (GC) [1,2]. In general, because the enthalpies of solution of many compounds are similar, separations can often be improved by decreasing column temperature. At a fixed temperature, we [3-6] have shown that the retention of a wide variety of solutes can be modeled by a general linear solvation energy relationship (LSER) of the form of eqn. 1. In this work, we seek to examine the extension of eqn. 1 to the solvation enthalpy  $\Delta H^0$  as expressed in eqn. 2.

$$\log k' = SP_0 + l \log L^{16} + s\pi_2^{*,C} + d\delta_2 + a\alpha_2^{C} + b\beta_2^{C}$$
(1)

$$\Delta H^{0} = SP_{0}^{h} + l^{h} \log L^{16} + s^{h} \pi_{2}^{*,C} + d^{h} \delta_{2}$$
$$+ a^{h} \alpha_{2}^{C} + b^{h} \beta_{2}^{C}$$
(2)

In the above equations, k' is the capacity factor,  $\Delta H^0$  is the infinite dilution enthalpy of solution (see below).  $SP_0$  is a solute-independent columndependent constant,  $L^{16}$  is the partition coefficient for transfer of the solute from the gas phase to *n*-hexadecane at 298 K,  $\pi_2^{*,C}$  is a GC-based solute dipolarity/polarizability parameter,  $\delta_2$  is an empirical polarizability correction factor, defined as zero for aliphatics, 0.5 for polyhalogenated compounds and 1 for aromatics.  $\alpha_2^C$  and  $\beta_2^C$  are solute hydrogen bond donor acidity and solute hydrogen acceptor basicity parameters also based on GC retention data [3–6].

In eqn. 1 the term  $l \log L^{16}$  represents the

<sup>\*</sup> Corresponding author.

<sup>\*</sup> Present address: Procter and Gamble Company, Miami Valley Laboratories, P.O. Box 398707, Cincinnati, OH 45239, USA.

combination of contributions to changes in retention due to solute-to-solute differences in cavity formation and dispersive (London) interactions. The term  $s\pi_2^{*,C}$  is the contribution of the dipolarity/polarizability interaction to retention. For aromatic and polyhalogenated compounds, which have different polarizabilities relative to aliphatic solutes, a minor correction term  $(d\delta_2)$  is often required. Finally,  $a\alpha_2^{C}$  and  $b\beta_2^{C}$  represent the contributions to retention resulting from solute-to-solvent and solvent-to-solute hydrogenbond formation, respectively.

A very similar approach to correlating retention in GC, but which differs in some minor detail, was developed and used extensively by Abraham and co-workers [7-13]. In their work, they replaced the Kamlet-Taft  $\delta_2$  term with a new excess molar refraction parameter  $(R_2)$ , defined as the molar refraction of the solute less the molar reflection of an alkane of the same Van der Waals volume. A comparison of our approach to that of Abraham and co-workers and Poole and co-workers' thermodynamic solvation model in predicting retention in GC and stationary phase characterization has appeared [14,15].

In general, we expect that solute-solvent interactions will decrease upon increasing temperature, due simply to increased thermal energy. That is, we expect that  $\Delta H^0$  will be negative. In the present case, any change in solute-solvent interactions (i.e. retention) with temperature could be due to temperature effects on the solute and on the solvent. We have no means (except for log  $L^{16}$  in a limited temperature range) of separating these, and hence adopt the convention that any change in a characteristic constant with temperature is due to a change in a solvent property only. This is consistent with Leffler and Grunwald's analysis of enthalpy effects in organic chemistry [16]. This has no effect in regard to inter-solvent comparisons, which is our present concern, but it would be important if absolute values of solvent properties were of interest.

In a study of characterization of some Nsubstituted amides as solvents by the LSER approach, Abraham *et al.* [8] found that the LSER coefficients for N-formylmorpholine (NFM) and N-methylpyrrolidinone (NMP) at J. Li and P.W. Carr / J. Chromatogr. A 659 (1994) 367-380

lower temperatures (40–100°C and 50–70°C, respectively) were very nicely linearly correlated with 1/T (K). However, the temperature range studied was rather limited compared to that used in most GC analyses.

In this work, we investigated the temperature dependence of the characteristic constants in eqn. 1 on the eight most commonly used capillary columns. This was accomplished by regressing log k' data at different temperatures against eqn. 1. The characteristic constants were then studied as a function of temperature.

Based on the same log k' temperature data, apparent free energy ( $\Delta G'$ ), enthalpy ( $\Delta H^0$ ) and apparent entropy ( $\Delta S'$ ) (see below) for the retention process were obtained. The apparent free energy, enthalpy and entropy were examined by means of LSER equations. While there is a great body of work on application of LSERs of the type of eqn. 1 to free energy related studies there is relatively little information on its relationship to enthalpy and entropy.

#### EXPERIMENTAL

The retention data (log k') for 53 highly variegated compounds that span an extremely wide range in chemical characteristics on eight common capillary columns ranging from a methyl silicone oil to polyethylene glycol have been published [17]. The solute parameters used are taken from refs. 3-5 and are given in Table I.

### **RESULTS AND DISCUSSION**

### Regression results for log k' at all temperatures

÷

į

The correlation results of using eqn. 1 with all the data are shown in Table II. We note that an average over all columns and temperatures gives a mean standard deviation of 0.047 and correlation coefficients of 0.998. Inspection of Table II suggests that the solute parameters can be applied to any column and temperature with an excellent goodness of good fit.

The LSER coefficients make good chemical sense and as expected they are much easier to interpret in comparison to the empirical approach described previously [17]. As shown in

## TABLE I

## SOLUTE SOLVATOCHROMIC PARAMETERS Parameters from refs. 3-5.

| No.      | Compound                         | Log L <sup>16</sup> | $\pi_{2}^{*,C}$ | α <sup>C</sup> <sub>2</sub> | β <sub>2</sub> <sup>c</sup> |
|----------|----------------------------------|---------------------|-----------------|-----------------------------|-----------------------------|
| 1        | Cyclohexane                      | 2.906               | 0.00            | 0.00                        | 0.00                        |
| 2        | 1-Hexene                         | 2.571               | -0.07           | 0.00                        | 0.02                        |
| 3        | Pentane                          | 2.163               | -0.18           | 0.00                        | 0.00                        |
| 4        | Hexane                           | 2.668               | -0.16           | 0.00                        | 0.00                        |
| 5        | Octane                           | 3.677               | -0.12           | 0.00                        | 0.00                        |
| 6        | Decane                           | 4.685               | -0.11           | 0.00                        | 0.00                        |
| 7        | Undecane                         | 5.191               | -0.10           | 0.00                        | 0.00                        |
| 8        | Tetradecane                      | 6.705               | -0.07           | 0.00                        | 0.00                        |
| 9        | Pentadecane                      | 7.209               | -0.06           | 0.00                        | 0.00                        |
| 10       | Ethyl acetate                    | 2.359               | 0.30            | 0.00                        | 0.49                        |
| 11       | Propyl acetate                   | 2.861               | 0.31            | 0.00                        | 0.48                        |
| 12       | Diethyl ether                    | 2.066               | 0.03            | 0.00                        | 0.40                        |
| 13       | Dipropyl ether                   | 2.971               | 0.03            | 0.00                        | 0.30                        |
| 14       | Dibutyl ether                    | 3.954               | 0.04            | 0.00                        | 0.29                        |
| 15       | Acetonitrile                     | 1.537               | 0.62            | 0.05                        | 0.37                        |
| 16       | Propionitrile                    | 1.978               | 0.64            | 0.00                        | 0.41                        |
| 17       | Acetone                          | 1.766               | 0.38            | 0.01                        | 0.52                        |
| 18       | 2-Butanone                       | 2.269               | 0.39            | 0.00                        | 0.48                        |
| 19       | 2-Pentanone                      | 2.726               | 0.40            | 0.00                        | 0.48                        |
| 20       | Dimethylformamide                | 2.922               | 0.81            | 0.00                        | 0.97                        |
| 21       | Dimethylacetamide                | 3.357               | 0.80            | 0.00                        | 1.06                        |
| 22       | Dimethylsulfoxide                | 3.110               | 1.00            | 0.00                        | 1.54                        |
| 23       | Propionaldehyde                  | 1.770               | 0.35            | 0.00                        | 0.37                        |
| 24       | Tetrahydrofuran                  | 2.521               | 0.27            | 0.00                        | 0.61                        |
| 25       | Triethylamine                    | 3.008               | 0.02            | 0.00                        | 0.64                        |
| 26       | Nitromethane                     | 1.839               | 0.67            | 0.06                        | 0.16                        |
| 27       | Nitroethane                      | 2.313               | 0.66            | 0.00                        | 0.17                        |
| 28       | Nitropropane                     | 2.773               | 0.65            | 0.00                        | 0.18                        |
| 29       | Methanol                         | 0.916               | 0.35            | 0.35                        | 0.52                        |
| 30       | Ethanol                          | 1.462               | 0.29            | 0.29                        | 0.52                        |
| 31       | 1-Propanol                       | 1.975               | 0.30            | 0.32                        | 0.52                        |
| 32       | 2-Propanol                       | 1.750               | 0.21            | 0.29                        | 0.53                        |
| 33       | 2-Methyl-2-propanol              | 1.994               | 0.19            | 0.25                        | 0.53                        |
| 34       | Trifluoroethanol                 | 1.315               | 0.37            | 0.66                        | 0.15                        |
| 35       | Hexafluoroisopropanol            | 1.370               | 0.47            | 1.11                        | 0.02                        |
| 36       | Acetic acid                      | 1.750               | 0.50            | 0.72                        | 0.50                        |
| 37       | Aniline                          | 3.934               | 0.76            | 0.20                        | 0.42                        |
| 38       | N-Methylaniline                  | 4.492               | 0.70            | 0.14                        | 0.31                        |
| 39       | Phenoi                           | 3.041               | 0.77            | 0.69                        | 0.23                        |
| 40       | Benzyl alcohol                   | 4.162               | 0.71            | 0.43                        | 0.51                        |
| 41       | m-Cresol                         | 4.18/               | 0.78            | 0.00                        | 0.24                        |
| 42       | Etnylamine                       | 1.040               | 0.17            | 0.00                        | 1.00                        |
| 43       | Propylamine                      | 2.083               | 0.22            | 0.00                        | 1.00                        |
| 44       | Butylamine                       | 2.575               | 0.26            | 0.00                        | 1.00                        |
| 45       | Benzene                          | 2.192               | 0.29            | 0.00                        | 0.10                        |
| 40       | Toluene                          | 3.343               | 0.29            | 0.00                        | 0.11                        |
| 47       | Etnylbenzene                     | 3.783               | 0.30            | 0.00                        | 0.11                        |
| 4ð<br>40 | - Yulono                         | 4.239               | 0.30            | 0.00                        | 0.12                        |
| 49<br>50 | <i>p</i> -Ayiene<br>Bongaldobuda | J.00/<br>2.025      | 0.28            | 0.00                        | 0.12                        |
| 50       | Denzaldenyde<br>Ronzonitrilo     | 3.933<br>2.012      | 0.75            | 0.00                        | U.42<br>0.40                |
| 52       | N N Dimothulaniling              | J.71J<br>4 752      | 0.85            | 0.00                        | 0.40                        |
| 52<br>52 | Carbon tetrashlarida             | 4./33               | 0.37            | 0.00                        | 0.20                        |
|          |                                  | 2.022               | 0.10            | 0.00                        | 0.04                        |

TABLE II

REGRESSION RESULTS FOR LOG k' DATA AT ALL TEMPERATURES

| Column          | T (°C) | SP <sub>0</sub> | 1     | S     | d      | а      | b      | S.D." | r <sup>b</sup> | n°              |
|-----------------|--------|-----------------|-------|-------|--------|--------|--------|-------|----------------|-----------------|
| <br>DB-1        | 150    | -2.120          | 0.438 | 0.217 | 0.070  | -0.035 | đ      | 0.057 | 0.996          | 53              |
|                 |        | 0.026           | 0.007 | 0.030 | 0.023  | 0.035  |        |       |                |                 |
|                 | 115    | -2.013          | 0.513 | 0.281 | 0.026  | 0.058  | đ      | 0.044 | 0.998          | 53              |
|                 |        | 0.020           | 0.006 | 0.023 | 0.018  | 0.027  |        |       |                |                 |
|                 | 80     | -1.957          | 0.627 | 0.323 | -0.015 | 0.215  | đ      | 0.029 | 0.999          | 53              |
|                 |        | 0.013           | 0.004 | 0.015 | 0.012  | 0.018  |        |       |                |                 |
|                 | 45     | -1.877          | 0.769 | 0.401 | -0.104 | 0.372  | đ      | 0.038 | 0.999          | 527             |
|                 |        | 0.017           | 0.005 | 0.020 | 0.016  | 0.023  |        |       |                |                 |
| DB-5            | 150    | -2.180          | 0.446 | 0.356 | 0.052  | -0.046 | đ      | 0.050 | 0.997          | 53              |
|                 |        | 0.023           | 0.006 | 0.026 | 0.020  | 0.031  |        |       |                |                 |
|                 | 115    | -2.095          | 0.517 | 0.414 | 0.019  | -0.017 | d      | 0.043 | 0.998          | 53              |
|                 |        | 0.019           | 0.005 | 0.022 | 0.017  | 0.026  |        |       |                |                 |
|                 | 80     | -2.030          | 0.620 | 0.451 | -0.023 | 0.146  | đ      | 0.034 | 0.999          | 53              |
|                 |        | 0.015           | 0.004 | 0.018 | 0.014  | 0.021  |        |       |                |                 |
|                 | 45     | -1.961          | 0.760 | 0.523 | -0.093 | 0.309  | đ      | 0.042 | 0.999          | 52 <sup>8</sup> |
|                 |        | 0.019           | 0.005 | 0.022 | 0.017  | 0.026  |        |       |                |                 |
| DB-1301         | 115    | -2 203          | 0 526 | 0.636 | -0.031 | 0 360  | d      | 0.056 | 0 997          | 52*             |
| <b>DB-</b> 1501 | 115    | 0.026           | 0.520 | 0.030 | 0.021  | 0.000  |        | 0.000 | 0.777          |                 |
|                 | 80     | -2 140          | 0.007 | 0.030 | -0.073 | 0.055  | d      | 0.048 | 0.998          | 52"             |
|                 | 00     | 0.022           | 0.021 | 0.725 | 0.075  | 0.000  |        | 0.040 | 0.770          |                 |
|                 | 60     | 2.002           | 0.000 | 0.023 | -0.130 | 0.029  | d      | 0.051 | 0.008          | 51 <sup>i</sup> |
|                 | 00     | -2.093          | 0.093 | 0.042 | 0.021  | 0.096  |        | 0.051 | 0.776          | 51              |
|                 | 45     | 0.024           | 0.007 | 0.027 | -0.156 | 0.051  | d      | 0.056 | 0.008          | 50 <sup>j</sup> |
|                 | 43     | -2.085          | 0.705 | 0.902 | -0.130 | 0.004  |        | 0.050 | 0.770          | 50              |
|                 |        | 0.027           | 0.007 | 0.029 | 0.025  | 0.055  |        |       |                |                 |
| DB-1701         | 150    | -2.294          | 0.427 | 0.824 | -0.035 | 0.267  | -0.133 | 0.033 | 0.998          | 53              |
|                 |        | 0.018           | 0.004 | 0.022 | 0.014  | 0.021  | 0.027  |       |                |                 |
|                 | 115    | -2.233          | 0.507 | 0.931 | -0.077 | 0.463  | -0.085 | 0.024 | 0.999          | 53              |
|                 |        | 0.013           | 0.003 | 0.016 | 0.010  | 0.016  | 0.020  |       |                |                 |
|                 | 80     | -2.156          | 0.616 | 1.071 | -0.133 | 0.669  | -0.086 | 0.032 | 0.999          | 53              |
|                 |        | 0.017           | 0.004 | 0.021 | 0.013  | 0.021  | 0.026  |       |                |                 |
|                 | 60     | -2.102          | 0.687 | 1.157 | -0.163 | 0.838  | -0.069 | 0.038 | 0.999          | 53              |
|                 |        | 0.021           | 0.005 | 0.025 | 0.016  | 0.025  | 0.031  |       |                |                 |
|                 | 45     | -2.016          | 0.744 | 1.239 | -0.214 | 0.963  | -0.111 | 0.044 | 0.999          | 53              |
|                 |        | 0.023           | 0.006 | 0.028 | 0.018  | 0.028  | 0.035  |       |                |                 |
| DB-17           | 150    | -2 420          | 0 427 | 0.827 | 0.081  | -0.068 | d      | 0.047 | 0.997          | 51*             |
| 5517            | 100    | 0.021           | 0.006 | 0.025 | 0.019  | 0.039  |        |       |                |                 |
|                 | 115    | -2 354          | 0.506 | 0.960 | 0.058  | -0.003 | đ      | 0.041 | 0.998          | 51*             |
|                 | 115    | 0.019           | 0.005 | 0.022 | 0.017  | 0.034  |        |       |                |                 |
|                 | 80     | -2.266          | 0.600 | 1 121 | 0.031  | 0.034  | đ      | 0.043 | 0.999          | 51*             |
|                 | 00     | 0.020           | 0.000 | 0.023 | 0.018  | 0.036  |        |       |                |                 |
|                 | 45     | -2 152          | 0.000 | 1 343 | -0.017 | 0.171  | đ      | 0.049 | 0.999          | 51 <sup>*</sup> |
|                 | τJ.    | 0.022           | 0.006 | 0.026 | 0.020  | 0.040  |        | 01017 | 00000          |                 |
| DD 210          | 115    | 2.140           | 0.300 | 1 454 | 0 220  | -0 210 | d      | 0.040 | 0.007          | 53              |
| DB-210          | 115    | -2.149          | 0.399 | 1.434 | 0.220  | -0.319 |        | 0.047 | 0.777          | 55              |
|                 | 00     | 0.022           | 0.000 | 0.025 | 0.020  | 0.030  | d      | 0.057 | 0.007          | 53              |
|                 | 80     | -2.052          | 0.489 | 1.00/ | 0.285  | -0.2/4 |        | 0.037 | 0.771          | 55              |
|                 |        | 0.026           | 0.007 | 0.030 | 0.023  | 0.035  |        |       |                |                 |

| TABLE II (4 | continued) |  |
|-------------|------------|--|
|-------------|------------|--|

| Column   | T (°C) | SP <sub>o</sub> | 1     | s     | d      | a      | ь      | \$.D." | r <sup>b</sup> | n°              |
|----------|--------|-----------------|-------|-------|--------|--------|--------|--------|----------------|-----------------|
| Tarrié e | 60     | 1.996           | 0.551 | 1.815 | 0.332  | -0.224 | d      | 0.063  | 0.997          | 53              |
|          |        | 0.028           | 0.008 | 0.033 | 0.025  | 0.038  |        |        |                |                 |
|          | 45     | -1.938          | 0.606 | 1.930 | -0.367 | -0.181 | d      | 0.054  | 0.998          | 50'             |
|          |        | 0.025           | 0.007 | 0.029 | 0.022  | 0.034  |        |        |                |                 |
| DB-225   | 150    | -2.367          | 0.371 | 1.512 | 0.001  | 0.436  | -0.096 | 0.053  | 0.997          | 53              |
|          |        | 0.028           | 0.007 | 0.034 | 0.022  | 0.034  | 0.043  |        |                |                 |
|          | 115    | -2.287          | 0.445 | 1.618 | -0.021 | 0.584  | 0.004  | 0.036  | 0.999          | 53              |
|          |        | 0.019           | 0.005 | 0.023 | 0.015  | 0.023  | 0.029  |        |                |                 |
|          | 80     | -2.194          | 0.537 | 1.794 | -0.044 | 0.837  | 0.073  | 0.036  | 0.999          | 53              |
|          |        | 0.019           | 0.005 | 0.023 | 0.015  | 0.023  | 0.029  |        |                |                 |
|          | 45     | -2.060          | 0.654 | 2.006 | -0.091 | 1.128  | 0.144  | 0.038  | 0.999          | 53              |
|          |        | 0.020           | 0.005 | 0.025 | 0.016  | 0.025  | 0.031  |        |                |                 |
| DB-WAX   | 115    | -2.245          | 0.416 | 1.819 | 0.095  | 1.365  | đ      | 0.077  | 0.996          | 49 <sup>m</sup> |
|          |        | 0.037           | 0.010 | 0.041 | 0.031  | 0.048  |        |        |                |                 |
|          | 80     | -2.195          | 0.505 | 2.127 | 0.058  | 1.953  | d      | 0.052  | 0.998          | 45"             |
|          |        | 0.027           | 0.007 | 0.028 | 0.022  | 0.051  |        |        |                |                 |
|          | 60     | -2.119          | 0.559 | 2.325 | 0.022  | 2.198  | đ      | 0.052  | 0.998          | 41°             |
|          |        | 0.028           | 0.007 | 0.030 | 0.024  | 0.052  |        |        |                |                 |
|          | 45     | -2.062          | 0.606 | 2.501 | 0.004  | 2.414  | đ      | 0.059  | 0.998          | 41°             |
|          |        | 0.033           | 0.008 | 0.034 | 0.027  | 0.060  |        |        |                |                 |

<sup>4</sup> Overall average standard deviation.

<sup>b</sup> Correlation coefficient.

<sup>c</sup> Number of data points.

"These coefficients were found to be not significantly different from zero and were omitted in the final fit.

Standard deviation of the coefficients.

<sup>f-o</sup> The following are solutes excluded in the final regression due to their being not eluted from the column or being outliers:<sup>f</sup> benzaldehyde; <sup>s</sup> N,N-dimethylaniline; <sup>h</sup> propionaldehyde; <sup>i</sup> propionaldehyde, ethylamine; <sup>j</sup> propionaldehyde, ethylamine, propylamine; <sup>k</sup> hexafluoroisopropanol, acetic acid; <sup>i</sup> cyclohexane, acetone, carbon tetrachloride; <sup>m</sup> triethylamine, ethylamine, propylamine, butylamine; <sup>b</sup> triethylamine, ethylamine, propylamine, butylamine, hexafluoroisopropanol, phenol, benzyl alcohol, *m*-cresol; <sup>o</sup> triethylamine, N-methylaniline, N,N-dimethylaniline.

Fig. 1, the l coefficients are about the same for DB-1, DB-5, DB-1301 and DB-1701 since these phases are primarily methylsilicones, but, as the percentage of phenyl or cyanopropyl groups increases (*i.e.* as the phases become more polar) their l coefficients decrease as expected [3]. DB-210 has the lowest l coefficient due to fluorine substitution which decreases the dispersive interactions with the solutes.

The signs and magnitudes of s make chemical sense. In general, the s coefficient increases as the phase becomes more polar. This agrees with the idea that an increase in solute dipolarity should cause a greater increase in retention in a more dipolar phase. The *a* coefficients for the DB-1, DB-5, DB-17 and DB-210 columns are small since these phases are known to be very weak acceptors of hydrogen bonds based on their effect on the spectra of Kamlet-Taft indicators that are able to donate hydrogen bonds [18]. In contrast, the *a* coefficients for the three cyano phases (DB-1301, DB-1701 and DB-225) are significant and as expected increase as the percentage of the 3-cyanopropyl group increases. DB-WAX is the most basic phase so it has the largest *a* coefficient. No phase has a big *b* coefficient because none has any hydrogen bond donor group. Although one might expect DB-



Fig. 1. Plots of LSER coefficients vs. column type at three temperatures:  $\nabla = 45^{\circ}$ C;  $\Theta = 80^{\circ}$ C;  $O = 115^{\circ}$ C. (A) a coefficients; (B) d coefficients; (C) l coefficients; (D) s coefficients.

WAX to have some hydrogen bond donor ability, in fact, it does not have a significant bcoefficient.

## Temperature dependence of the LSER coefficients

We note that the LSER coefficients for all the phases change monotonically with temperature (Table III). Taking DB-1701 as an example, the LSER coefficients for this phase were plotted against 1/T (Fig. 2). We note that  $SP_0$  and all

other coefficients (l, s, d, a and b) are approximately linear with 1/T (Fig. 2). Regression of the LSER coefficients against 1/T gives rise to the temperature dependence of the LSER coefficients (eqn. 3, Table III).

$$X = X_{\rm A} + X_{\rm B}/T \tag{3}$$

where  $X = SP_0$ , *l*, *s*, *d*, *a* or *b*. Subscript A and B represent the intercept and slope of the temperature dependence of the coefficient, respectively.

## TABLE III

## TEMPERATURE DEPENDENCE OF THE LSER COEFFICIENTS

Eqn. 3 was the regression equation employed.

| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Column         | X               | X <sub>A</sub> " | X <sub>B</sub> <sup>b</sup> | S.D. <sup>c</sup> | $r^{2 d}$ | n <sup>e</sup> |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------|------------------|-----------------------------|-------------------|-----------|----------------|--|
| $DB-1701 = \begin{cases} r_{0}^{2} & -0.651 & 451.77 & 0.001 & 1.000 & 4 \\ s & -0.500 & 235.15 & 0.004 & 0.999 & 4 \\ d & 0.602 & -224.38 & 0.003 & 1.000 & 4 \\ a & -1.269 & 522.78 & 0.004 & 1.000 & 4 \\ \end{cases}$ $DB-5 = \begin{cases} SP_{0} & -2.701 & 235.86 & 0.004 & 0.998 & 4 \\ l & -0.990 & 428.71 & 0.005 & 0.999 & 4 \\ d & 0.431 & -160.5 & 0.001 & 1.000 & 4 \\ a & -1.487 & 572.94 & 0.013 & 0.997 & 4 \\ \end{bmatrix}$ $DB-1301 = \begin{cases} SP_{0} & -3.517 & 477.65 & 0.019 & 0.982 & 4 \\ - & -0.558 & 418.93 & 0.008 & 0.996 & 4 \\ d & 0.376 & -234.09 & 0.014 & 0.989 & 4 \\ d & 0.576 & -234.09 & 0.014 & 0.983 & 4 \\ a & -1.684 & 792.85 & 0.005 & 1.000 & 5 \\ s & -0.367 & 972.85 & 0.005 & 1.000 & 5 \\ s & -0.367 & 99.30 & 0.000 & 1.000 & 5 \\ d & 0.445 & -203.24 & 0.003 & 1.000 & 5 \\ s & -0.367 & 99.30 & 0.000 & 1.000 & 5 \\ s & -0.367 & 99.30 & 0.000 & 1.000 & 4 \\ d & 0.445 & -203.24 & 0.003 & 0.999 & 5 \\ b & -0.367 & 99.30 & 0.000 & 1.000 & 5 \\ s & -0.377 & 99.30 & 0.000 & 1.000 & 4 \\ d & 0.333 & -106.71 & 0.000 & 1.000 & 4 \\ d & 0.333 & -106.71 & 0.000 & 1.000 & 4 \\ s & -0.793 & 306.54 & 0.002 & 1.000 & 4 \\ d & 0.454 & 261.50 & 0.001 & 1.000 & 4 \\ d & 0.454 & 261.50 & 0.001 & 1.000 & 4 \\ d & 0.454 & 261.50 & 0.001 & 1.000 & 4 \\ d & 0.454 & 261.50 & 0.001 & 1.000 & 4 \\ d & 0.474 & 261.50 & 0.001 & 1.000 & 4 \\ d & 0.474 & 261.50 & 0.001 & 1.000 & 4 \\ d & 0.474 & 261.50 & 0.001 & 1.000 & 4 \\ d & 0.474 & 261.50 & 0.001 & 1.000 & 4 \\ d & 0.474 & 261.50 & 0.001 & 1.000 & 4 \\ d & 0.478 & 0.031 & 1.000 & 4 \\ d & 0.478 & -1.160 & 20.005 & 0.989 & 4 \\ d & 0.478 & -1.160 & 20.005 & 0.988 & 4 \\ d & 0.478 & -1.160 & 20.005 & 0.988 & 4 \\ d & 0.478 & -1.660 & 851.17 & 0.012 & 0.998 & 4 \\ DB-WAX & SP_{0} & -3.405 & 427.62 & 0.003 & 1.000 & 4 \\ d & 0.372 & -1.2326 & 0.005 & 1.000 & 4 \\ d & 0.372 & -1.2326 & 0.005 & 1.000 & 4 \\ d & 0.372 & -1.2326 & 0.005 & 1.000 & 4 \\ d & 0.372 & -1.2326 & 0.005 & 1.000 & 4 \\ d & 0.001 & 1.000 & 4 \\ d & 0.372 & -1.2326 & 0.005 & 1.000 & 4 \\ d & 0.372 & -1.2326 & 0.005 & 1.000 & 4 \\ d & 0.072 & -1.2326 & 0.005 & 1.000 & 4 \\ d & 0.072 & -1.2326 & 0.005 & 1.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DB-1           | SP.             | -2.635           | 240.53                      | 0.004             | 0.998     | 4              |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | ĩ               | -0.651           | 451.77                      | 0.001             | 1.000     | 4              |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | S               | -0.340           | 235.15                      | 0.004             | 0.999     | 4              |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | d               | 0 602            | -224 38                     | 0.003             | 1.000     | 4              |  |
| $DB-5 \qquad SP_0 - 2.701 \qquad 235.86 \qquad 0.004 \qquad 0.998 \qquad 4 \\ l & -0.590 \qquad 428.71 \qquad 0.005 \qquad 0.999 \qquad 4 \\ d & 0.431 \qquad -160.5 \qquad 0.004 \qquad 0.999 \qquad 4 \\ d & 0.431 \qquad -160.5 \qquad 0.004 \qquad 0.999 \qquad 4 \\ d & -1.487 \qquad 572.94 \qquad 0.013 \qquad 0.997 \qquad 4 \\ DB-1301 \qquad SP_0 & -3.517 \qquad 477.65 \qquad 0.019 \qquad 0.982 \qquad 4 \\ - & -0.558 \qquad 418.93 \qquad 0.008 \qquad 0.996 \qquad 4 \\ d & 0.576 \qquad -234.09 \qquad 0.014 \qquad 0.963 \qquad 4 \\ d & 0.576 \qquad -234.09 \qquad 0.014 \qquad 0.963 \qquad 4 \\ d & 0.576 \qquad -234.09 \qquad 0.014 \qquad 0.999 \qquad 5 \\ d & 0.576 \qquad -234.09 \qquad 0.014 \qquad 0.999 \qquad 5 \\ d & 0.576 \qquad -234.09 \qquad 0.003 \qquad 1.000 \qquad 5 \\ l & -0.546 \qquad 410.24 \qquad 0.003 \qquad 1.000 \qquad 5 \\ d & 0.445 \qquad -203.24 \qquad 0.003 \qquad 0.999 \qquad 5 \\ d & -1.684 \qquad 531.82 \qquad 0.004 \qquad 0.009 \qquad 5 \\ d & 0.445 \qquad -203.24 \qquad 0.003 \qquad 0.999 \qquad 5 \\ d & -1.822 \qquad 880.05 \qquad 0.009 \qquad 0.999 \qquad 5 \\ d & -1.822 \qquad 880.05 \qquad 0.009 \qquad 0.999 \qquad 5 \\ d & -0.367 \qquad 99.30 \qquad 0.000 \qquad 1.000 \qquad 5 \\ d & 0.445 \qquad -203.24 \qquad 0.003 \qquad 1.000 \qquad 5 \\ d & 0.445 \qquad -203.24 \qquad 0.003 \qquad 1.000 \qquad 5 \\ d & 0.445 \qquad -203.24 \qquad 0.003 \qquad 1.000 \qquad 5 \\ d & 0.445 \qquad -203.24 \qquad 0.003 \qquad 1.000 \qquad 4 \\ d & 0.333 \qquad -106.71 \qquad 0.000 \qquad 1.000 \qquad 4 \\ d & 0.333 \qquad -106.71 \qquad 0.000 \qquad 1.000 \qquad 4 \\ d & 0.333 \qquad -106.71 \qquad 0.000 \qquad 1.000 \qquad 4 \\ d & 0.333 \qquad -106.71 \qquad 0.000 \qquad 1.000 \qquad 4 \\ d & 0.445 \qquad -20.793 \qquad 306.54 \qquad 0.000 \qquad 1.000 \qquad 4 \\ d & 0.278 \qquad -1.119 \qquad 298.40 \qquad 0.001 \qquad 1.000 \qquad 4 \\ d & 0.278 \qquad -1.119 \qquad 298.40 \qquad 0.001 \qquad 1.000 \qquad 4 \\ d & 0.278 \qquad -1.160 \qquad 885.17 \qquad 0.002 \qquad 1.000 \qquad 4 \\ d & 0.278 \qquad -1.160 \qquad 885.17 \qquad 0.002 \qquad 1.000 \qquad 4 \\ d & 0.278 \qquad -1.160 \qquad 0.006 \qquad 0.998 \qquad 4 \\ l & -0.628 \qquad 246.29 \qquad 0.005 \qquad 0.998 \qquad 4 \\ l & -0.628 \qquad 246.29 \qquad 0.005 \qquad 0.998 \qquad 4 \\ l & -0.439 \qquad 323.63 \qquad 0.002 \qquad 1.000 \qquad 4 \\ d & 0.278 \qquad -1.160 \qquad 0.006 \qquad 0.985 \qquad 4 \\ d & 0.278 \qquad -1.160 \qquad 0.006 \qquad 0.985 \qquad 4 \\ d & 0.278 \qquad -1.600 \qquad 885.17 \qquad 0.002 \qquad 1.000 \qquad 4 \\ d & 0.278 \qquad -1.600 \qquad 885.17 \qquad 0.002 \qquad 1.000 \qquad 4 \\ d & 0.278 \qquad -1.30 \qquad 0.225.6 \qquad 0.000 \qquad 1.000 \qquad 4 \\ d & 0.278 \qquad -1.30 \qquad 0.225.6 \qquad 0.000 \qquad 1.000 \qquad 4 \\ d & 0.278 \qquad -1.30 \qquad 0.225.6 \qquad 0.000 \qquad 1.000 \qquad 4 \\ d & 0.239 \qquad -2.330 \qquad 1516.16 \qquad 0.000 \qquad 1.000 \qquad 4 \\ d & 0.239 \qquad -12.326 \qquad 0.005 \qquad 0.009 \qquad 0.002 \qquad 0.000 \qquad 0.002 \qquad 0.000 \qquad 0.000 \qquad 0.000 \qquad 0.00$                                                                                        |                | a               | -1.269           | 522.78                      | 0.004             | 1.000     | 4              |  |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 |                  | 02200                       |                   |           |                |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DB-5           | SP <sub>o</sub> | -2.701           | 235.86                      | 0.004             | 0.998     | 4              |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 1               | -0.590           | 428.71                      | 0.005             | 0.999     | 4              |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | S               | -0.149           | 213.22                      | 0.004             | 0.999     | 4              |  |
| $a -1.487 572.94 0.013 0.997 4$ $DB-1301 \begin{cases} SP_0 & -3.517 & 477.65 & 0.019 & 0.982 & 4 \\ - & -0.558 & 418.93 & 0.008 & 0.996 & 4 \\ d & 0.576 & -234.09 & 0.014 & 0.963 & 4 \\ d & 0.576 & -234.09 & 0.014 & 0.963 & 4 \\ a & -1.684 & 792.85 & 0.005 & 1.000 & 4 \\ \end{cases}$ $DB-1701 \begin{cases} SP_0 & -3.006 & 300.58 & 0.002 & 1.000 & 5 \\ i & -0.546 & 410.24 & 0.003 & 1.000 & 5 \\ s & -0.436 & 531.82 & 0.004 & 1.000 & 5 \\ a & -1.832 & 888.05 & 0.009 & 0.999 & 5 \\ a & -1.832 & 888.05 & 0.009 & 0.999 & 5 \\ a & -1.832 & 888.05 & 0.009 & 0.999 & 5 \\ b & -0.367 & 99.30 & 0.000 & 1.000 & 4 \\ s & -0.739 & 660.34 & 0.009 & 0.999 & 4 \\ d & 0.333 & -106.71 & 0.000 & 1.000 & 4 \\ s & -0.739 & 660.34 & 0.009 & 0.999 & 4 \\ d & 0.333 & -106.71 & 0.000 & 1.000 & 4 \\ c & -0.739 & 306.54 & 0.000 & 1.000 & 4 \\ c & -0.739 & 306.54 & 0.000 & 1.000 & 4 \\ c & -0.739 & 306.54 & 0.000 & 1.000 & 4 \\ d & 0.333 & -106.71 & 0.000 & 1.000 & 4 \\ c & -0.739 & 366.23 & 0.004 & 0.999 & 4 \\ d & 0.333 & -106.71 & 0.000 & 1.000 & 4 \\ c & -0.739 & 366.54 & 0.000 & 1.000 & 4 \\ c & -0.739 & 366.54 & 0.001 & 1.000 & 4 \\ c & -0.739 & 366.54 & 0.001 & 1.000 & 4 \\ d & 0.278 & -11.19 & 298.40 & 0.001 & 1.000 & 4 \\ c & -1.119 & 298.40 & 0.001 & 1.000 & 4 \\ c & -1.119 & 298.40 & 0.001 & 1.000 & 4 \\ c & -0.628 & 246.29 & 0.005 & 0.999 & 4 \\ c & -0.628 & 246.29 & 0.005 & 0.999 & 4 \\ c & -0.628 & 246.29 & 0.005 & 0.999 & 4 \\ c & -0.628 & 246.29 & 0.005 & 0.999 & 4 \\ c & -0.628 & 246.29 & 0.005 & 0.999 & 4 \\ c & -0.628 & 246.29 & 0.005 & 0.999 & 4 \\ c & -0.628 & 246.29 & 0.005 & 0.999 & 4 \\ c & -2.350 & 125.48 & 0.006 & 1.000 & 4 \\ c & -2.350 & 1516.16 & 0.008 & 1.000 & 4 \\ c & -2.350 & 1516.16 & 0.008 & 1.000 & 4 \\ c & -2.350 & 1516.16 & 0.008 & 1.000 & 4 \\ c & -2.350 & 1516.16 & 0.008 & 1.000 & 4 \\ c & -2.350 & 1516.16 & 0.008 & 1.000 & 4 \\ c & -2.350 & 1516.16 & 0.008 & 1.000 & 4 \\ c & -2.350 & 1516.16 & 0.008 & 1.000 & 4 \\ c & -2.350 & 1516.16 & 0.008 & 1.000 & 4 \\ c & -2.350 & 1516.16 & 0.008 & 1.000 & 4 \\ c & -2.350 & 1516.16 & 0.008 & 1.000 & 4 \\ c & -2.350 & 1516.16 & 0.008 & 1.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | d               | 0.431            | -160.5                      | 0.001             | 1.000     | 4              |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | а               | -1.487           | 572.94                      | 0.013             | 0.997     | 4              |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DB-1301        | S D             | -3 517           | 177 65                      | 0.010             | 0.082     | A              |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DD-1301        | 510             | _0.559           | 419.02                      | 0.012             | 0.006     |                |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | _               | -0.536           | 410.73                      | 0.006             | 0.990     | 4              |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | s               | -0.581           | 472.75                      | 0.005             | 0.999     | 4              |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | a               | 0.570            | -234.09                     | 0.014             | 1.000     | 4              |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | а               | -1.684           | /92.85                      | 0.005             | 1.000     | 4              |  |
| $l = -0.546 + 410.24 + 0.003 + 1.000 + 5$ $s = -0.436 + 531.82 + 0.004 + 1.000 + 5$ $d = 0.445 + -203.24 + 0.003 + 0.009 + 5$ $a = -1.832 + 888.05 + 0.009 + 0.999 + 5$ $b = -0.367 + 99.30 + 0.000 + 1.000 + 5$ $DB-17 = SP_0 + -3.237 + 344.20 + 0.005 + 0.999 + 4$ $l = -0.470 + 378.90 + 0.003 + 1.000 + 4$ $s = -0.793 + 306.54 + 0.000 + 1.000 + 4$ $d = 0.333 + -106.71 + 0.000 + 1.000 + 4$ $d = 0.333 + -106.71 + 0.000 + 1.000 + 4$ $s = -0.793 + 306.54 + 0.000 + 1.000 + 4$ $J = -0.540 + 364.09 + 0.002 + 1.000 + 4$ $s = -0.717 + 842.37 + 0.020 + 1.000 + 4$ $d = 0.454 + 261.50 + 0.001 + 1.000 + 4$ $d = 0.454 + 261.50 + 0.001 + 1.000 + 4$ $d = 0.454 + 261.50 + 0.001 + 1.000 + 4$ $J = -0.489 + 363.13 + 0.003 + 1.000 + 4$ $s = -0.489 + 363.13 + 0.003 + 1.000 + 4$ $d = 0.278 + -116.02 + 0.006 + 0.985 + 4$ $a = -1.660 + 885.17 + 0.012 + 0.999 + 4$ $b = -0.628 + 246.29 + 0.005 + 0.999 + 4$ $l = -0.439 + 332.63 + 0.002 + 0.000 + 4$ $J = -0.439 + 332.63 + 0.002 + 0.000 + 4$ $J = -0.439 + 332.63 + 0.002 + 0.000 + 4$ $J = -0.439 + 332.63 + 0.002 + 0.000 + 4$ $J = -0.439 + 332.63 + 0.002 + 0.000 + 4$ $J = -0.439 + 332.63 + 0.002 + 0.000 + 4$ $J = -0.439 + 332.63 + 0.002 + 0.000 + 4$ $J = -0.628 + 246.29 + 0.005 + 0.999 + 4$ $J = -0.628 + 246.29 + 0.005 + 0.999 + 4$ $J = -0.628 + 246.29 + 0.005 + 0.999 + 4$ $J = -0.628 + 246.29 + 0.005 + 0.999 + 4$ $J = -0.628 + 246.29 + 0.005 + 0.999 + 4$ $J = -0.628 + 246.29 + 0.005 + 0.999 + 4$ $J = -0.628 + 246.29 + 0.005 + 0.999 + 4$ $J = -0.628 + 246.29 + 0.005 + 0.999 + 4$ $J = -0.628 + 246.29 + 0.005 + 0.999 + 4$ $J = -0.628 + 246.29 + 0.005 + 0.999 + 4$ $J = -0.628 + 246.29 + 0.005 + 0.999 + 4$ $J = -0.628 + 246.29 + 0.005 + 0.999 + 4$ $J = -0.628 + 246.29 + 0.005 + 0.999 + 4$ $J = -0.628 + 246.29 + 0.005 + 0.999 + 4$ $J = -0.628 + 246.29 + 0.005 + 0.999 + 4$ $J = -0.628 + 246.29 + 0.005 + 0.000 + 4$ $J = -0.439 + 332.63 + 0.005 + 0.000 + 4$ $J = -0.439 + 332.63 + 0.005 + 0.000 + 4$ $J = -0.439 + 332.63 + 0.005 + 0.000 + 4$ $J = -0.330 + 0.339 + 0.005 + 0.000 + 4$ $J = -0.439 + 332.63 + $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>DB-1701</b> | SP <sub>o</sub> | -3.006           | 300.58                      | 0.002             | 1.000     | 5              |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 1               | -0.546           | 410.24                      | 0.003             | 1.000     | 5              |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | S               | -0.436           | 531.82                      | 0.004             | 1.000     | 5              |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | d               | 0.445            | -203.24                     | 0.003             | 0.999     | 5              |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | a               | -1.832           | 888.05                      | 0.009             | 0.999     | 5              |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | Б́              | -0.367           | 99.30                       | 0.000             | 1.000     | 5              |  |
| $DB-11 \qquad SP_0 = -3.237 \qquad 344.20 \qquad 0.003 \qquad 0.999 \qquad 4 \\ l = -0.470 \qquad 378.90 \qquad 0.003 \qquad 1.000 \qquad 4 \\ s = -0.739 \qquad 660.34 \qquad 0.009 \qquad 0.999 \qquad 4 \\ d = 0.333 \qquad -106.71 \qquad 0.000 \qquad 1.000 \qquad 4 \\ a = -0.793 \qquad 306.54 \qquad 0.000 \qquad 1.000 \qquad 4 \\ \end{bmatrix}$ $DB-210 \qquad SP_0 = -3.097 \qquad 368.23 \qquad 0.004 \qquad 0.999 \qquad 4 \\ l = -0.540 \qquad 364.09 \qquad 0.002 \qquad 1.000 \qquad 4 \\ s = -0.717 \qquad 842.37 \qquad 0.020 \qquad 1.000 \qquad 4 \\ d = 0.454 \qquad 261.50 \qquad 0.001 \qquad 1.000 \qquad 4 \\ a = -1.119 \qquad 298.40 \qquad 0.001 \qquad 1.000 \qquad 4 \\ s = -0.143 \qquad 683.62 \qquad 0.001 \qquad 1.000 \qquad 4 \\ s = -0.143 \qquad 683.62 \qquad 0.001 \qquad 1.000 \qquad 4 \\ s = -0.143 \qquad 683.62 \qquad 0.001 \qquad 1.000 \qquad 4 \\ s = -0.688 \qquad 263.13 \qquad 0.003 \qquad 1.000 \qquad 4 \\ d = 0.278 \qquad -116.02 \qquad 0.006 \qquad 0.985 \qquad 4 \\ a = -1.660 \qquad 885.17 \qquad 0.012 \qquad 0.999 \qquad 4 \\ b = -0.628 \qquad 246.29 \qquad 0.005 \qquad 0.998 \qquad 4 \\ DB-WAX \qquad SP_0 \qquad -3.405 \qquad 427.62 \qquad 0.003 \qquad 1.000 \qquad 4 \\ c = -0.439 \qquad 332.63 \qquad 0.002 \qquad 1.000 \qquad 4 \\ c = -0.439 \qquad 332.63 \qquad 0.002 \qquad 1.000 \qquad 4 \\ c = -0.439 \qquad 332.63 \qquad 0.002 \qquad 1.000 \qquad 4 \\ c = -0.439 \qquad 332.63 \qquad 0.002 \qquad 1.000 \qquad 4 \\ c = -0.439 \qquad 332.63 \qquad 0.002 \qquad 1.000 \qquad 4 \\ c = -0.439 \qquad 332.63 \qquad 0.002 \qquad 1.000 \qquad 4 \\ c = -0.439 \qquad 332.63 \qquad 0.002 \qquad 1.000 \qquad 4 \\ c = -0.439 \qquad 332.63 \qquad 0.002 \qquad 1.000 \qquad 4 \\ c = -1.350 \qquad 1225.48 \qquad 0.006 \qquad 1.000 \qquad 4 \\ c = -2.350 \qquad 1516.16 \qquad 0.008 \qquad 1.000 \qquad 4 \\ c = -2.350 \qquad 1516.16 \qquad 0.008 \qquad 1.000 \qquad 4 \\ c = -2.350 \qquad 0.1516.16 \qquad 0.008 \qquad 0.000 \qquad $ | DD 17          | cn              | 2 227            | 244.00                      | 0.005             | 0.000     | 4              |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DB-1/          | $SP_0$          | -3.23/           | 344.20                      | 0.005             | 0.999     | 4              |  |
| $B = 210 \qquad SP_{0} = -3.097 \qquad 368.23 \qquad 0.004 \qquad 0.999 \qquad 4 \\ d = 0.333 \qquad -106.71 \qquad 0.000 \qquad 1.000 \qquad 4 \\ a = -0.793 \qquad 306.54 \qquad 0.000 \qquad 1.000 \qquad 4 \\ c = -0.540 \qquad 364.09 \qquad 0.002 \qquad 1.000 \qquad 4 \\ c = -0.540 \qquad 364.09 \qquad 0.002 \qquad 1.000 \qquad 4 \\ c = -0.717 \qquad 842.37 \qquad 0.020 \qquad 1.000 \qquad 4 \\ d = 0.454 \qquad 261.50 \qquad 0.001 \qquad 1.000 \qquad 4 \\ a = -1.119 \qquad 298.40 \qquad 0.001 \qquad 1.000 \qquad 4 \\ c = -0.489 \qquad 363.13 \qquad 0.003 \qquad 1.000 \qquad 4 \\ c = -0.489 \qquad 363.13 \qquad 0.003 \qquad 1.000 \qquad 4 \\ c = -0.489 \qquad 363.13 \qquad 0.003 \qquad 1.000 \qquad 4 \\ c = -0.489 \qquad 363.13 \qquad 0.003 \qquad 1.000 \qquad 4 \\ c = -0.628 \qquad 246.29 \qquad 0.005 \qquad 0.998 \qquad 4 \\ c = -0.628 \qquad 246.29 \qquad 0.005 \qquad 0.998 \qquad 4 \\ c = -0.628 \qquad 246.29 \qquad 0.005 \qquad 0.998 \qquad 4 \\ c = -0.628 \qquad 246.29 \qquad 0.005 \qquad 0.998 \qquad 4 \\ c = -0.628 \qquad 246.29 \qquad 0.005 \qquad 0.998 \qquad 4 \\ c = -0.628 \qquad 246.29 \qquad 0.005 \qquad 0.998 \qquad 4 \\ c = -0.628 \qquad 246.29 \qquad 0.005 \qquad 0.998 \qquad 4 \\ c = -0.439 \qquad 332.63 \qquad 0.002 \qquad 1.000 \qquad 4 \\ c = -0.439 \qquad 332.63 \qquad 0.002 \qquad 1.000 \qquad 4 \\ c = -0.439 \qquad 332.63 \qquad 0.002 \qquad 1.000 \qquad 4 \\ c = -0.439 \qquad 332.63 \qquad 0.002 \qquad 1.000 \qquad 4 \\ c = -0.439 \qquad 332.63 \qquad 0.002 \qquad 1.000 \qquad 4 \\ c = -0.439 \qquad 332.63 \qquad 0.002 \qquad 1.000 \qquad 4 \\ c = -0.439 \qquad 332.63 \qquad 0.002 \qquad 1.000 \qquad 4 \\ c = -2.350 \qquad 125.48 \qquad 0.006 \qquad 1.000 \qquad 4 \\ c = -2.350 \qquad 125.48 \qquad 0.006 \qquad 1.000 \qquad 4 \\ c = -2.350 \qquad 125.616 \qquad 0.008 \qquad 1.000 \qquad 4 \\ c = -2.350 \qquad 150.616 \qquad 0.008 \qquad 1.000 \qquad 4 \\ c = -2.350 \qquad 1.000 \qquad 1 \\ c = -2.350 \qquad 1.000$                                                                                                                                                             |                | l               | -0.4/0           | 3/8.90                      | 0.003             | 1.000     | 4              |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | s .             | -0.739           | 660.34                      | 0.009             | 0.999     | 4              |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | d               | 0.333            | -106.71                     | 0.000             | 1.000     | 4              |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | а               | -0.793           | 306.54                      | 0.000             | 1.000     | 4              |  |
| $DB-225 \qquad \begin{array}{ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>DB-210</b>  | SP <sub>0</sub> | -3.097           | 368.23                      | 0.004             | 0.999     | 4              |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 1               | -0.540           | 364.09                      | 0.002             | 1.000     | 4              |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | s               | -0.717           | 842.37                      | 0.020             | 1.000     | 4              |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | d               | 0.454            | 261.50                      | 0.001             | 1.000     | 4              |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | a               | -1.119           | 298.40                      | 0.001             | 1.000     | 4              |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DB 115         | съ              | 2 204            | 201 01                      | 0.007             | 0.009     | A              |  |
| $DB-WAX = \begin{cases} s & -0.489 & 505.15 & 0.003 & 1.000 & 4 \\ s & -0.143 & 683.62 & 0.001 & 1.000 & 4 \\ d & 0.278 & -116.02 & 0.006 & 0.985 & 4 \\ a & -1.660 & 885.17 & 0.012 & 0.999 & 4 \\ b & -0.628 & 246.29 & 0.005 & 0.998 & 4 \\ \end{cases}$ $DB-WAX = \begin{cases} SP_0 & -3.405 & 427.62 & 0.003 & 1.000 & 4 \\ l & -0.439 & 332.63 & 0.002 & 1.000 & 4 \\ s & -1.350 & 1225.48 & 0.006 & 1.000 & 4 \\ d & 0.392 & -123.26 & 0.000 & 1.000 & 4 \\ a & -2.350 & 1516.16 & 0.008 & 1.000 & 4 \\ \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DB-225         |                 | - 3.290          | 371.71                      | 0.007             | 1.000     | 4              |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 1               | -0.469           | 505.15                      | 0.005             | 1.000     | 4              |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | S ,             | -0.143           | 085.02                      | 0.001             | 1.000     | 4              |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | a               | 0.278            | -116.02                     | 0.000             | 0.985     | 4              |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                 | -1.000           | 885.17                      | 0.012             | 0.999     | 4              |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | b               | -0.628           | 246.29                      | 0.005             | 0.998     | 4              |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DB-WAX         | SPa             | -3.405           | 427.62                      | 0.003             | 1.000     | 4              |  |
| $egin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | ıĭ              | -0.439           | 332.63                      | 0.002             | 1.000     | 4              |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | s               | -1.350           | 1225.48                     | 0.006             | 1.000     | 4              |  |
| a -2.350 1516.16 0.008 1.000 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | d               | 0.392            | -123.26                     | 0.000             | 1.000     | 4              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | а               | -2.350           | 1516.16                     | 0.008             | 1.000     | 4              |  |

<sup>d</sup> Intercept of the plot LSER coefficient vs. 1/T. <sup>b</sup> Slope of the plot LSER coefficient vs. 1/T. <sup>c</sup> Standard deviation of the fit. <sup>d</sup> Correlation coefficient squared. <sup>e</sup> Number of data points (temperatures).



Fig. 2. Plots of  $(\bigcirc)$  SP<sub>0</sub>, (O) l,  $(\bigtriangledown)$  s,  $(\Box)$  a and  $(\blacktriangledown)$  d coefficients vs. 1/T for the DB-1701 column.

The temperature dependence of the LSER coefficients are very important when one compares the solute-solvent interaction strengths of solvents at different temperatures.

In addition the excellent linearity of these fits suggest that we can now predict retention of any solute whose parameters (log  $L^{16}$ ,  $\pi_2^{*,C}$ ,  $\alpha_2^{C}$  and  $\beta_2^{C}$ ) are known at any temperature for these eight columns. Since these eight columns are chemically the most commonly used stationary phases this suggests that the present results can be used as the basis for a broadly applicable optimization scheme for GC separations. For example, it should be possible to generate "window diagram" [19,20] as a function of temperature for each phase reported here for any set of

solutes whose LSER parameters are known. The optimum temperature and column could then be selected *a priori*.

We note from Tables II and III that the temperature dependences of the LSER coefficients depend on the magnitudes of the coefficients, *i.e.* the strength of the specific interaction that the stationary phase can have. For example, the temperature dependence of the s coefficient  $(s_{\rm B})$  increases as the phase s coefficient increases, that is,  $s_{\rm B}$  becomes larger as the phase becomes more dipolar. The magnitude of the temperature coefficients  $(X_A, X_B)$  of the LSER coefficients are very close for chemically similar solvents. For example, the temperature dependence of the l coefficient for DB-1 is very close to that of chemically similar non-polar stationary phases such as OV-101 and SE-30. A comparison of predicted l coefficients based on the temperature dependence of the l coefficient of DB-1 (shown in Table III) with experimentally measured l coefficients for similar non-polar stationary phases is shown in Table IV. Excellent agreement is observed. All slopes shown in Table III are positive except for that of the dcoefficient. This sign is expected since an increase of temperature should decrease solutesolvent interactions and thus decrease retention. The *d* coefficient has a small (the smallest among all the LSER coefficients) but negative temperature dependence.

| TA | BL | Æ | IV |
|----|----|---|----|
|    |    |   |    |

| Phase         | Temperature (°C) | l <sub>pred.</sub> <sup>a</sup> | l <sub>expt.</sub> b | $\Delta l^{c}$ | Ref. <sup>d</sup> |  |
|---------------|------------------|---------------------------------|----------------------|----------------|-------------------|--|
| SE-30         | 120              | 0.499                           | 0.522                | 0.023          | 3                 |  |
| SE-30         | 121.4            | 0.494                           | 0.502                | 0.0075         | 3                 |  |
| <b>OV-101</b> | 60               | 0.706                           | 0.690                | -0.016         | 19                |  |
| <b>OV-101</b> | 70               | 0.666                           | 0.647                | -0.019         | 19                |  |
| OV-101        | 80               | 0.629                           | 0.608                | -0.021         | 19                |  |

COMPARISON OF PREDICTED AND EXPERIMENTAL I COEFFICIENT FOR NON-POLAR STATIONARY PHASES

<sup>a</sup> Predicted *l* coefficient was calculated using the temperature dependence of the *l* coefficient of DB-1 (l = -0.651 + 451.773/T).

<sup>b</sup> Experimental *l* coefficient was obtained by regressing the retention data (log k', log  $V_g$ ) from the indicated references with eqn. 1;  $V_g$  is the specific retention volume.

 $\Delta l = l_{\rm expt.} - l_{\rm pred.}$ 

<sup>d</sup> Source of experimental data.

### Thermodynamics of the retention process

Since k' is proportional to the infinite dilution distribution coefficient,  $\Delta H^0$  is the enthalpy for the corresponding process. Thus  $\Delta H^0$  is the enthalpy corresponding to the transfer of solute from a 1 mol/l gas phase state to a 1 mol/l solution both acting as hypothetically infinitely dilute mixtures. Ben Naim [21] refers to this as a "solvation" parameter.

By regressing log k' against 1/T (Van 't Hoff plot), the enthalpy of the retention process  $(\Delta H^0)$  can be calculated from eqn. 4.

$$\frac{\mathrm{d}\log k'}{\mathrm{d}(1/T)} = -\frac{\Delta H^0}{2.303R} \tag{4}$$

where  $\Delta H^0$  is the enthalpy of the retention process and R is the gas constant. The relative standard deviation for the slope of log k' vs. 1/Tis in general less than 2%. Therefore, the relative standard deviation for the enthalpy estimates is generally less than 2%.

The enthalpy estimates are given in Table V. We note that all enthalpies are negative as expected. Because some compounds did not elute at lower temperatures, we were not able to calculate the enthalpy for them.

From eqn. 4, we can also calculate the entropy  $\Delta S^0$  if we know the phase ratio  $\phi$ . Because we do not know the phase ratio, we can only calculate an apparent entropy ( $\Delta S'$ ). The apparent Gibbs free energy ( $\Delta G'$ ) and entropy ( $\Delta S'$ ) are defined as follows:

$$\Delta G' = -RT \ln k' = -RT \ln K\phi$$
$$= -RT \ln K - RT \ln \phi = \Delta G^0 - RT \ln \phi$$
(5)

$$\Delta S' = (\Delta H^0 - \Delta G')/T$$
  
=  $(\Delta H^0 - \Delta G^0 + RT \ln \phi)/T$   
=  $\Delta S^0 + R \ln \phi$  (6)

These equations are predicated on the assumption that the solute is retained by a pure partition process, that is, interfacial adsorption is assumed to be negligible. From the log k' and the enthalpy ( $\Delta H^0$ ) data, the apparent free energy and apparent entropy can be calculated from eqns. 5

and 6. We note that the apparent entropy  $(\Delta S')$  is negative over the temperature range examined. The entropy of retention is expected to be negative due to the loss of some translational entropy when the solute interacts with the stationary phase.

# Correlation of $\Delta G'$ , $\Delta H^0$ and $\Delta S'$ by linear solvation energy relationships

Log k' and  $\Delta G'$  differ only by a factor of RT (eqn. 5). At a given temperature, the fitting coefficients for log k' and  $\Delta G'$  using eqn. 1 will also differ only by a factor of RT. We show the regression results for  $\Delta G'$  at only one temperature (80°C) for the purpose of comparison with the fitting coefficients for  $\Delta H^0$ . The fitting results for both  $\Delta G'$  and  $\Delta H^0$  are shown in Table VI. The fitting coefficients for  $T\Delta S'$  can be calculated easily as  $\Delta H^0 - \Delta G'$ .

We must point out that all of the solute parameters (see Table I) used in eqn. 1 are free energy-based solute parameters. Whether free energy-based solute parameters can fit solution enthalpies and entropies is by no means guaranteed [22]. It is important to note that as pointed out by Hildebrand *et al.* [23] and by Leffler and Grunwald [16] that while many models of solution do an excellent job of correlating and predicting free energies they often fail quite badly in predicting enthalpies and entropies.

Fuchs et al. [24] correlated the  $\Delta G^0$ ,  $\Delta H^0$  and  $T\Delta S^0$  of transfer of aliphatic and aromatic solutes from 2,2,4-trimethylpentane to aqueous solutions using free energy-based solute parameters. Their LSER fits of  $\Delta H^0$  and  $T\Delta S^0$  are significantly poorer than are fits of  $\Delta G^0$ . They concluded that this may be due to greater experimental errors in  $\Delta H^0$  and  $T\Delta S^0$ , since they are derived from differentiation of log k' with respect to 1/T, rather than any intrinsic difficulty in handling "structural" contributions within the LSER framework.

We note that the standard deviation for the  $\Delta H^0$  regressions (see Table VI) are about three to seven times larger than those for the  $\Delta G'$  regressions. Still the regression results for  $\Delta H^0$  are very acceptable. Although  $\Delta G'$  differs from  $\Delta G^0$  by a constant  $RT \ln \phi$  (eqn. 5), this constant only shows up in the  $SP_0$  term. This will

### TABLE V

ENTHALPY  $(-\Delta H)$  OF THE RETENTION PROCESS (kJ/mol)

| No.      | Compound              | <b>DB-</b> 1 | DB-5 | DB-1301 | DB-1701 | DB-17 | DB-210 | DB-225 | DB-WAX |
|----------|-----------------------|--------------|------|---------|---------|-------|--------|--------|--------|
| 1        | Cyclohexane           | 27.9         | 26.2 | 27.0    | а       | 25.9  | a      | 26.8   | a      |
| 2        | 1-Hexene              | 25.0         | 23.3 | 25.2    | 24.7    | 23.2  | 23.9   | 25.9   | 22.7   |
| 3        | Pentane               | 21.6         | 20.5 | 24.3    | 21.0    | 19.3  | 18.5   | 19.1   | 16.1   |
| 4        | Hexane                | 29.3         | 24.5 | 28.1    | 25.6    | 24.1  | 22.6   | 23.0   | 18.9   |
| 5        | Octane                | 34.1         | 33.0 | 36.4    | 32.9    | 31.2  | 29.8   | 30.2   | 26.0   |
| 6        | Decane                | 43.3         | 40.8 | 43.6    | 42.1    | 39.3  | 38.5   | 39.8   | 34.8   |
| 7        | Undecane              | 47.7         | 45.0 | 47.6    | 46.4    | 43.2  | 41.7   | 42.9   | 37.8   |
| 8        | Tetradecane           | 61.3         | 58.5 | 61.0    | 59.4    | 56.5  | 52.1   | 53.3   | 48.0   |
| 9        | Pentadecane           | 66.0         | 63.0 | 65.5    | 63.9    | 59.0  | 55.9   | 57.1   | 51.5   |
| 10       | Ethyl acetate         | 27.2         | 25.5 | 29.7    | 29.2    | 28.5  | 29.9   | 30.9   | 29.6   |
| 11       | Propyl acetate        | 31.1         | 28.8 | 33.4    | 33.0    | 33.4  | 33.5   | 35.0   | 32.7   |
| 12       | Diethyl ether         | 23.7         | 21.2 | 23.4    | 24.3    | 22.3  | 22.6   | 25.4   | 19.6   |
| 13       | Dipropyl ether        | 30.3         | 27.8 | 31.3    | 30.9    | 29.1  | 28.0   | 31.2   | 25.7   |
| 14       | Dibutyl ether         | 38.4         | 35.3 | 38.8    | 39.2    | 36.8  | 35.0   | 37.3   | 34.1   |
| 15       | Acetonitrile          | a            | 20.3 | 24.8    | 26.2    | 24.9  | 27.6   | 28.5   | 32.3   |
| 16       | Propionitrile         | 24.7         | 23.1 | 29.3    | 28.8    | 29.0  | 30.7   | 31.7   | 32.8   |
| 17       | Acetone               | 20.1         | 19.3 | 28.1    | 24.4    | 24.9  | 26.8   | 27.1   | 26.2   |
| 18       | 2-Butanone            | 25.6         | 23.8 | 31.1    | 28.8    | 27.5  | 30.3   | 31.8   | 29.0   |
| 19       | 2-Pentanone           | 28.9         | 27.1 | 32.2    | 32.2    | 30.9  | 33.8   | 34.4   | 31.7   |
| 20       | Dimethylformamide     | 32.3         | 31.4 | 37.4    | 38.9    | 37.5  | 41.2   | 41.4   | 42.4   |
| 21       | Dimethylacetamide     | 35.6         | 33.3 | 40.9    | 42.0    | 41.2  | 45.3   | 44.8   | 45.2   |
| 22       | Dimethylsulfoxide     | 34.6         | 32.3 | 40.9    | 41.1    | 41.3  | 44.6   | 45.2   | 49.6   |
| 23       | Propionaldehyde       | 22.5         | 19.4 | a       | 25.9    | 23.9  | 25.3   | 24.6   | 25.7   |
| 24       | Tetrahydrofuran       | 26.3         | 24.1 | 32.5    | 27.8    | 28.0  | 27.9   | 29.4   | 30.3   |
| 25       | Triethylamine         | 32.3         | 27.5 | 31.1    | 33.4    | 28.1  | 30.3   | 33.5   | a      |
| 26       | Nitromethane          | 25.7         | 25.8 | 27.9    | 29.7    | 28.4  | 30.6   | 32.1   | a      |
| 27       | Nitroethane           | 27.8         | 25.0 | 31.9    | 32.3    | 31.2  | 33.6   | 33.8   | 37.7   |
| 28       | Nitropropane          | 30.5         | 30.2 | 35.7    | 35.3    | 34.4  | 36.5   | 36.5   | 39.5   |
| 29       | Methanol              | 16.5         | 19.9 | 22.2    | 24.1    | a     | 20.5   | 27.7   | 31.0   |
| 30       | Ethanol               | a            | 23.8 | a       | 27.1    | 23.1  | 22.5   | 28.0   | 33.5   |
| 31       | 1-Propanol            | 24.0         | 27.5 | 29.3    | 29.9    | 25.4  | 28.0   | a      | 37.2   |
| 32       | 2-Propanol            | 23.2         | 22.9 | 25.0    | 27.1    | 21.5  | 24.0   | 30.0   | 33.6   |
| 33       | 2-Methyl-2-propanol   | 23.6         | 22.1 | 26.6    | 27.2    | 24.5  | 25.7   | 29.8   | 32.8   |
| 34       | Trifluoroethanol      | 27.8         | 23.7 | 35.1    | 34.6    | 23.9  | 25.2   | 33.1   | 44.1   |
| 35       | Hexafluoroisopropanol | 34.0         | 30.1 | 43.3    | 43.5    | a     | 29.9   | 44.2   | a      |
| 36       | Acetic acid           | a            | 30.0 | 40.8    | a       | a     | a      | a      | a      |
| 37       | Aniline               | 37.9         | 36.9 | 44.4    | 44.3    | 43.8  | 42.9   | 49.0   | а      |
| 38       | N-Methylaniline       | 41.4         | 38.5 | 47.0    | 46.6    | 47.3  | 45.4   | 50.6   | a      |
| 39       | Phenol                | 41.1         | 40.0 | 52.1    | 50.6    | 43.8  | 41.2   | 53.6   | а      |
| 40       | Benzyl alcohol        | 40.4         | 38.5 | 48.7    | 47.3    | 45.8  | 43.4   | 51.9   | a      |
| 41       | m-Cresol              | 44.1         | a    | 55.6    | 54.8    | 47.3  | 45.1   | 56.9   | a      |
| 42       | Ethylamine            | 19.3         | 18.6 | a       | 23.3    | 19.5  | 19.8   | 26.8   | a      |
| 43       | Propylamine           | 25.7         | 22.3 | a       | 26.8    | 23.5  | 23.8   | 28.9   | a      |
| 44       | Butylamine            | 29.0         | 24.6 | 32.2    | 32.3    | 29.3  | 28.6   | 32.2   | a      |
| 45       | Benzene               | 27.1         | 25.4 | 28.5    | 28.4    | 28.1  | 26.4   | 29.4   | 29.2   |
| 46       | Toluene               | 31.1         | 29.3 | 32.9    | 32.4    | 32.2  | 31.3   | 32.9   | 32.5   |
| 47       | Ethylbenzene          | 34.7         | 32.8 | 36.4    | 36.1    | 35.8  | 34.6   | 36.8   | 35.4   |
| 48       | Propylbenzene         | 38.5         | 36.1 | 40.1    | 40.3    | 39.3  | 37.8   | 40.2   | 38.2   |
| 49<br>50 | <i>p</i> -Xylene      | 35.6         | 33.3 | 37.0    | 36.3    | 36.0  | 35.4   | 37.1   | 35.7   |
| 50       | Benzaldehyde          | 37.3         | 36.1 | 41.4    | 41.3    | 42.5  | 41.7   | 43.3   | 47.6   |
| 51       | Benzonitrile          | 39.0         | 37.0 | 43.3    | 42.4    | 44.6  | 43.9   | 45.2   | a      |
| 52       | N,N-Dimethylaniline   | 43.2         | 38.6 | 45.9    | 44.8    | 46.8  | 45.8   | 47.8   | a      |
| 55       | Carbon tetrachloride  | 27.1         | 26.9 | 27.8    | 27.1    | 27.3  | a      | 26.5   | 27.8   |

"No data due to missing log k' data at various temperatures on the respective column.

not complicate any discussion of the solute-solvent interactions involved in the free energies and enthalpies.

We note that in both the  $\Delta G'$  and  $\Delta H^0$  regressions, all LSER coefficients are negative except for the *d* coefficient which is positive (see Table VI, exceptions to this include DB-17 and DB-WAX which have negative *d* coefficients and

DB-210 which has a small positive *a* coefficient for the  $\Delta G'$  regression). This means that an increase in any solute parameter causes both  $\Delta G'$  and  $\Delta H^0$  to become more negative (favorable). The magnitude of any coefficient for  $\Delta G'$ is smaller than that for  $\Delta H^0$ . This indicates that interactions (cavity dispersion, dipolar interaction, hydrogen bonding interactions) between



Fig. 3. Comparison of  $SP_0$ , *l*, *s*, *a* and *d* coefficients for the regressions of  $\Delta H^0$  and  $\Delta G'$  against the LSER equations (eqns. 1 and 2). The solid lines represent the least squares regression lines. DB-1, DB-5 and DB-17 are represented by filled symbols. Other phases are represented by open symbols.

| Column                                                                    | $SP_0$                                         |                                              | 1                  |               | s              |                | q             |              | q            |                | ø              |                | S.D. <sup>4</sup> |              | 4r    | 1            | ັ້              |
|---------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------|--------------------|---------------|----------------|----------------|---------------|--------------|--------------|----------------|----------------|----------------|-------------------|--------------|-------|--------------|-----------------|
|                                                                           | ∆G'                                            | $\Delta H^0$                                 | ₫Ċ,                | $\Delta H^0$  | ∆G′            | $\Delta H^0$   | <b>∆</b> G′   | $\Delta H^0$ | ¢G′          | 0 <sup>H</sup> | <i>∆G</i> ′    | $\Delta H^0$   | ΔG'               | $\Delta H^0$ | ₽Ċ,   | $\Delta H^0$ |                 |
| DB-1                                                                      | 13.23<br>0.09                                  | -5.95<br>0.67                                | -4.24<br>0.03      | -8.18<br>0.19 | -2.18<br>0.10  | -3.39<br>0.77  | 0.10<br>0.08  | 3.94<br>0.59 | ופי<br>ו     | I              | -1.45<br>0.12  | -10.74<br>0.95 | 0.20              | 1.45         | 666.0 | 066'0        | 30,             |
| DB-5                                                                      | 13.73<br>0.10                                  | -5.80<br>0.70                                | -4.19<br>0.03      | -7.69<br>0.17 | -3.05<br>0.12  | -5.07<br>0.84  | 0.16<br>0.09  | 4.02<br>0.54 | ì            | 2.20<br>1.04   | -0.98<br>0.14  | -10.88<br>0.87 | 0.23              | 1.29         | 666.0 | 166.0        | 521             |
| DB-1301                                                                   | 14.53<br>0.15                                  | -6.80<br>0.72                                | -4.20<br>0.04      | -8.12<br>0.20 | -4.89<br>0.17  | -9.23<br>0.79  | 0.49<br>0.13  | 4.37<br>0.61 | ١            | I              | -3.77<br>0.20  | -18.11<br>0.93 | 0.32              | 1.50         | 0.998 | 0:989        | 49 <sup>8</sup> |
| DB-1701                                                                   | 14.58<br>0.11                                  | -7.18<br>0.54                                | -4.16<br>0.03      | -7.81<br>0.15 | -7.24<br>0.14  | -10.29<br>0.61 | 0.09<br>0.09  | 4.61<br>0.47 | 0.58<br>0.18 | I              | -4.52<br>0.14  | -17.37<br>0.76 | 0.22              | 1.17         | 666.0 | 0.993        | 51 <sup>#</sup> |
| DB-17                                                                     | 15.32<br>0.14                                  | -5.47<br>0.34                                | -4.06<br>0.04      | -7.58<br>0.10 | -7.58<br>0.16  | -12.87<br>0.40 | -0.21<br>0.12 | 2.36<br>0.30 | ì            | I              | -0.23<br>0.24  | -4.96<br>0.50  | 0.29              | 0.75         | 666.0 | 0.997        | 51'             |
| DB-210                                                                    | 13.88<br>0.18                                  | -7.18<br>0.48                                | -3.31<br>0.05      | -6.95<br>0.13 | -11.27<br>0.20 | -16.41<br>0.56 | 1.93<br>0.16  | 4.79<br>0.43 | I            | t              | 1.85<br>0.24   | -3.39<br>0.69  | 0.39              | 1.05         | 0.997 | 0.993        | 51 <sup>j</sup> |
| DB-225                                                                    | 14.84<br>0.13                                  | -7.26<br>0.51                                | -3.63<br>0.03      | 6.99<br>0.13  | -12.13<br>0.16 | -12.27<br>0.62 | 0.30<br>0.10  | 2.26<br>0.40 | 0.49<br>0.20 | -5.88<br>0.79  | -5.66<br>0.16  | -17.71<br>0.65 | 0.24              | 0.96         | 666.0 | 0.995        | 51 <sup>k</sup> |
| DB-WAX                                                                    | 14.84<br>0.18                                  | -7.05<br>0.61                                | -3.41<br>0.05      | -6.32<br>0.15 | -14.38<br>0.19 | -22.40         | -0.39<br>0.15 | 1.99<br>0.52 | I            | T              | -13.21<br>0.34 | -28.79<br>0.90 | 0.35              | 1.11         | 966.0 | 0.993        | 39'             |
| <sup>a</sup> Standard<br><sup>b</sup> Correlatio<br><sup>c</sup> Number o | deviation of<br>m coefficien<br>of solutes in- | f the fits.<br>It of the fit:<br>cluded in t | s.<br>he regressio | S.            |                |                |               |              | ]            |                |                |                |                   |              |       |              |                 |

REGRESSION RESULTS OF APPARENT  $\Delta G'$  AND  $\Delta H^0$  VS. LSER PARAMETERS

TABLE VI

378

 $\lambda$  is converte excurse as une source on the main regression one to the missing  $\Delta V$  of  $\Delta T$  values of event outers. Accounting, emany, accine and, "m-stesson, cutation, propontaucupue, ethylamine, heydonexane, acetic acid," methanol, acetic acid, acetic acid, and the state of acid, and the propolation of the state of acid, and the state of the state

: ( )

1

į

ı

-

-

the solute and the stationary phase produce large favorable negative enthalpies but unfavorable negative entropies.

In order to examine the relative contribution of the enthalpy and entropy to retention in terms of different kinds of interactions, we compare the LSER coefficients for  $\Delta G'$  and  $\Delta H^0$ . The most important contributions to retention are from the  $l \log L^{16}$  term and the  $s\pi_2^{*,C}$  term (keep in mind that the log  $L^{16}$  parameter has a much larger range than the solvatochromic parameters). Although these two terms also give unfavorable entropies, their contributions to enthalpies are much larger and outweigh the unfavorable entropy contributions. We note that for  $\Delta H^0$  the hydrogen bonding term  $a\alpha_2^{\rm C}$  gives very large and favorable enthalpies. However, this favorable enthalpy term must be largely compensated by the unfavorable corresponding  $a\alpha_2^{\rm C}$  term in the entropy term  $(-T\Delta S')$  because the  $a\alpha_2^{\rm C}$  term in the  $\Delta G'$  regression is relatively small except for DB-WAX and DB-225. No significant enthalpy contribution comes from the  $b\beta_2^{\rm C}$  term except for the DB-225 phase. This term does not produce any significant contribution to the free energy. In contrast to all other terms, the  $d\delta_2$  term except for the DB-WAX and DB-17 phases gives unfavorable enthalpies and favorable entropies thus resulting in a small unfavorable contribution to the free energies.

We compare the LSER regression coefficients for both  $\Delta G'$  and  $\Delta H^0$  in Fig. 3. In these plots the solid lines represent the least squares regression lines. We see that there are approximately linear relationships between the LSER coefficients, especially for the l, s and a coefficients. DB-1, DB-5 and DB-17 are methyl silicones of different percentages of phenyl substitution [8], we used filled symbols to identify these phases in the plots. We note that in all plots they fall on the regression lines for all phases except for the  $SP_0$  plot in which these three phases form a separate line. DB-1301, DB-1701 and DB-225 are methylsilicones of different percentages of cyanopropylphenyl substitution. As shown in Fig. 3 there are systematic variations in  $SP_0$ based on  $\Delta G'$  and  $\Delta H^0$ . While the SP<sub>0</sub> term does not influence the chromatographic selectivity, that is, the ratio of k' for two solutes, it clearly

must be encoding some information as to the net strength of the interaction between the solutes and the stationary phase. The relationship between  $SP_0(\Delta H^0)$  and  $SP_0(\Delta G')$  shown in Fig. 3 is also complicated by the fact that  $\Delta H^0$  is independent of the phase ratio ( $\phi$ ) while  $\Delta G'$ depends on  $\phi$  which varies from column to column. They also fall on the same regression lines for all phases.

The data presented in this paper regarding the enthalpy, entropy and free energy of the chromatographic retention process is very relevant to Trouton's rule for enthalpy-entropy relationships of vaporization of pure liquids at their normal boiling point [25], Barclay and Butler's [26] and Frank and Evans' [27,28] studies of enthalpy-entropy of vaporization of pure liquids at 25°C, and related studies [29,30]. The fact that the l, s and a coefficients for the  $\Delta G'$  and  $\Delta H^0$ regressions correlate is very important. It means that contributions from the various stationary phase-solute interactions to the enthalpy and free energy are linearly related. It will have important implications as to the existence of enthalpy-entropy compensations in the chromatographic retention process which will be described in a subsequent study [31].

### ACKNOWLEDGEMENT

This work was supported in part by grants to the University of Minnesota from the National Science Foundation and the Petroleum Research Foundation.

#### REFERENCES

- 1 C.F. Poole and S.K. Poole, *Chromatography Today*, Elsevier, Amsterdam, New York, 1991.
- 2 T. Kuwana, Physical Methods in Modern Chemical Analysis, Academic Press, New York, 1978.
- 3 J. Li, Y. Zhang and P.W. Carr, Anal. Chem., 64 (1992) 210.
- 4 J. Li, Y. Zhang, A.J. Dallas and P.W. Carr, J. Chromatogr., 550 (1991) 101.
- 5 J. Li, Y. Zhang, H. Ouyang and P.W. Carr, J. Am. Chem. Soc., 114 (1992) 9813.
- 6 J. Li, Y. Zhang and P.W. Carr, Anal. Chem., 65 (1993) 1969.

- ----
- 7 M.H. Abraham, G.S. Whiting, R.M. Doherty and W.J. Shuely, J. Chem. Soc., Perkin Trans. 2, (1990) 1451.
- 8 M.H. Abraham, G.S. Whiting, R.M. Doherty and W.J. Shuely, J. Chem. Soc., Perkin Trans. 2, (1990) 1851.
- 9 M.H. Abraham, G.S. Whiting, R.M. Doherty and W.J. Shuely, J. Chromatogr., 518 (1990) 329.
- 10 M.H. Abraham, G.S. Whiting, R.M. Doherty and W.J. Shuely, J. Chromatogr., 587 (1991) 213.
- 11 M.H. Abraham, G.S. Whiting, R.M. Doherty and W.J. Shuely, J. Chromatogr., 587 (1991) 229.
- 12 M.H. Abraham, I. Hamerton, J.B. Rose and J.W. Grate, J. Chem. Soc., Perkin Trans. 2, (1991) 1417.
- 13 M.H. Abraham and G.S. Whiting, J. Chromatogr. 594 (1992) 229.
- 14 C.F. Poole, T.O. Kollie and S.K. Poole, Chromatographia, 34 (1992) 281.
- 15 T.O. Kollie, C.F. Poole, M.H. Abraham and G.S. Whiting, Anal. Chim. Acta, 259 (1992) 1.
- 16 J.E. Leffler and E. Grunwald, Rates and Equilibria of Organic Reactions, Wiley, Inc. New York, 1963.
- 17 J. Li, A.J. Dallas and P.W. Carr, J. Chromatogr., 517 (1990) 103.
- 18 J.E. Brady, *Ph.D. Thesis*, University of Minnesota, Minneapolis, MN, 1984.

- J. Li and P.W. Carr / J. Chromatogr. A 659 (1994) 367-380
- 19 C.-F. Chien, R.J. Laub and M.M. Kopeecni, Anal. Chem., 52 (1980) 1407.
- 20 R.J. Laub and J.H. Purnell, Anal. Chem., 48 (1976) 799.
- 21 A. Ben-Naim, Solvation Thermodynamics, Plenum Press, New York, 1987.
- 22 M.J. Hait, C.L. Liotta, C.A. Eckert, J. Li and P.W. Carr, J. Phys. Chem., submitted for publication.
- 23 J.H. Hildebrand, J.M. Prausnitz and R.L. Scott, Regular and Related Solutions; The Solubility of Gases, Liquids and Solids, Van Nostrand Reinhold, New York, 1970.
- 24 R. Fuchs, M.H. Abraham, M.J. Kamlet and R.W. Taft, J. Phys. Org. Chem., 2 (1989) 559.
- 25 F. Trouton, Phil. Mag., 18 (1884) 54.
- 26 I.M. Barclay and J.A.V. Butler, Trans. Faraday Soc., 34 (1938) 1445.
- 27 H.S. Frank, J. Chem. Phys., 13 (1945) 493.
- 28 H.S. Frank and M.W. Evans, J. Chem. Phys., 13 (1945) 507.
- 29 D.H. Everett, J. Chem. Soc., (1960) 2566.
- 30 L. Nash, J. Chem. Educ., 61 (1984) 981.
- 31 J. Li and P.W. Carr, J. Chromatogr., in press.